Monthly Archives: April 2014

Landau damping effects on dust-acoustic solitary waves in a dusty negative-ion plasma. (arXiv:1404.6623v1 [physics.plasm-ph])

The nonlinear theory of dust-acoustic waves (DAWs) with Landau damping is studied in an unmagnetized dusty negative-ion plasma in the extreme conditions when the free electrons are absent. The cold massive charged dusts are described by fluid equations, whereas the two-species of ions (positive and negative) are described by the kinetic Vlasov equations. A Korteweg de-Vries (KdV) equation with Landau damping, governing the dynamics of weakly nonlinear and weakly dispersive DAWs, is derived following Ott and Sudan [Phys. Fluids {\bf 12}, 2388 (1969)]. It is shown that for some typical laboratory and space plasmas, the Landau damping (and the nonlinear) effects are more pronounced than the finite Debye length (dispersive) effects for which the KdV soliton theory is not applicable to DAWs in dusty pair-ion plasmas. The properties of the linear phase velocity, solitary wave amplitudes (in presence and absence of the Landau damping) as well as the Landau damping rate are studied with the effects of the positive ion to dust density ratio $(\mu_{pd})$ as well as the ratios of positive to negative ion temperatures $(\sigma)$ and masses $(m)$.

Paramagnetic dust particles in rf-plasmas with weak external magnetic fields

Experimental studies on dusty plasmas containing systems of (super-)paramagnetic dust particles are presented. In our experiments, external (homogeneous as well as inhomogeneous) magnetic fields in the mT range are applied to study the effect on single particles or few-particle systems that are trapped inside the sheath region. The behavior of the paramagnetic dust particles is considerably different than that of dielectric plastic particles, which are widely used in dusty plasmas. It is revealed that especially non-magnetic contributions play an important role in the interaction between superparamagnetic particles.

Analysis of optical near-field energy transfer by stochastic model unifying architectural dependencies

We theoretically and experimentally demonstrate energy transfer mediated by optical near-field interactions in a multi-layer InAs quantum dot (QD) structure composed of a single layer of larger dots and N layers of smaller ones. We construct a stochastic model in which optical near-field interactions that follow a Yukawa potential, QD size fluctuations, and temperature-dependent energy level broadening are unified, enabling us to examine device-architecture-dependent energy transfer efficiencies. The model results are consistent with the experiments. This study provides an insight into optical energy transfer involving inherent disorders in materials and paves the way to systematic design principles of nanophotonic devices that will allow optimized performance and the realization of designated functions.

Symbolic transfer entropy analysis of the dust interaction in the presence of wakefields in dusty plasmas

Author(s): André Melzer and André Schella

The method of symbolic transfer entropy has been applied to analyze the behavior of charged-particle systems under the influence of an ion focus (wakefield) in a dusty plasma. Using long-run experiments under various plasma and trapping conditions, it is revealed from the transfer entropy that infor...

[Phys. Rev. E 89, 041103] Published Thu Apr 24, 2014

Wakes in inhomogeneous plasmas

Author(s): Roman Kompaneets, Alexei V. Ivlev, Vladimir Nosenko, and Gregor E. Morfill

The Debye shielding of a charge immersed in a flowing plasma is an old classic problem. It has been given renewed attention in the last two decades in view of experiments with complex plasmas, where charged dust particles are often levitated in a region with strong ion flow. Efforts to describe the ...

[Phys. Rev. E 89, 043108] Published Thu Apr 24, 2014

Observations of strong ion-ion correlations in dense plasmasa)

Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ∼3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k = 4 Å−1. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are however in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. We have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.

Stress-induced microcracking and cooperative motion of cold dusty plasma liquids

Author(s): Chi Yang and Lin I

We investigate the microresponse of the quasi-two-dimensional dusty plasma liquid around freezing to the shear force from a laser beam through the center of the liquid cluster. It is found that the cold liquid can be viewed as a patchwork of crystalline ordered domains (CODs) which are solidlike but...

[Phys. Rev. E 89, 041102] Published Mon Apr 21, 2014

Mobility in a strongly coupled dusty plasma with gas

Author(s): Bin Liu and J. Goree

The mobility of a charged projectile in a strongly coupled dusty plasma is simulated. A net force F, opposed by a combination of collisional scattering and gas friction, causes projectiles to drift at a mobility-limited velocity up. The mobility μp=up/F of the projectile's motion is obtained. Two re...

[Phys. Rev. E 89, 043107] Published Mon Apr 21, 2014

Waves in two-dimensional superparamagnetic dusty plasma liquids

Author(s): Peter Hartmann, Zoltán Donkó, Marlene Rosenberg, and Gabor J. Kalman

Wave dispersion relations in the strongly coupled liquid phase of a two-dimensional system of dust grains interacting via both Yukawa and dipole interactions are investigated. The model system comprises a layer of charged superparamagnetic grains in a plasma in an external, uniform magnetic field B ...

[Phys. Rev. E 89, 043102] Published Fri Apr 04, 2014