A versatile table-top dusty plasma experimental device (DPEx) to study flow
induced excitations of linear and nonlinear waves/structures in a complex
plasma is presented. In this $\Pi$-shaped apparatus a DC glow discharge plasma
is produced between a disc shaped anode and a grounded long cathode tray by
applying a high voltage DC in the background of a neutral gas and subsequently
a dusty plasma is created by introducing micron sized dust particles that get
charged and levitated in the sheath region. A flow of the dust particles is
induced in a controlled manner by adjusting the pumping speed and the gas flow
rate into the device. A full characterisation of the plasma, using Langmuir and
emissive probe data, and that of the dusty plasma using particle tracking data
with the help of an idl based (super) Particle Identification and Tracking
(sPIT) code is reported. Experimental results on the variation of the dust flow
velocity as a function of the neutral pressure and the gas flow rate are given.
The potential experimental capabilities of the device for conducting
fundamental studies of flow induced instabilities are discussed.

The effects of linear Landau damping on the nonlinear propagation of dust-acoustic solitary waves (DASWs) are studied in a collisionless unmagnetized dusty plasma with two species of positive ions. The extremely massive, micron-seized, cold, and negatively charged dust particles are described by fluid equations, whereas the two species of positive ions, namely, the cold (heavy) and hot (light) ions are described by the kinetic Vlasov equations. Following Ott and Sudan [Phys. Fluids 12, 2388 (1969)], and by considering lower and higher-order perturbations, the evolution of DASWs with Landau damping is shown to be governed by Korteweg-de Vries (KdV), modified KdV (mKdV), or Gardner (KdV-mKdV)-like equations. The properties of the phase velocity and the Landau damping rate of DASWs are studied for different values of the ratios of the temperatures
(
σ
)
and the number densities
(
μ
)
of hot and cold ions as well as the cold to hot ion mass ratio m. The distinctive features of the decay rates of the amplitudes of the KdV, mKdV, and Gardner solitons with a small effect of Landau damping are also studied in different parameter regimes. It is found that the Gardner soliton points to lower wave amplitudes than the KdV and mKdV solitons. The results may be useful for understanding the localization of solitary pulses and associated wave damping (collisionless) in laboratory and space plasmas (e.g., the F-ring of Saturn), in which the number density of free electrons is much smaller than that of ions and the heavy, micron seized dust grains are highly charged.

The effects of strong electrostatic interaction among highly charged dust on multi-dimensional instability of dust-acoustic (DA) solitary waves in a magnetized strongly coupled dusty plasma by small-
k
perturbation expansion method have been investigated. We found that a Zakharov-Kuznetsov equation governs the evolution of obliquely propagating small amplitude DA solitary waves in such a strongly coupled dusty plasma. The parametric regimes for which the obliquely propagating DA solitary waves become unstable are identified. The basic properties, viz., amplitude, width, instability criterion, and growth rate, of these obliquely propagating DA solitary structures are found to be significantly modified by the effects of different physical strongly coupled dusty plasma parameters. The implications of our results in some space/astrophysical plasmas and some future laboratory experiments are briefly discussed.

We survey a model for theoretical study of the interaction of hydrogen and dust surface and apply our results for dusty plasmas to fusion devices. In this model, considering the mobility of ad-atoms from one physisorbed, or chemisorbed site, to other one by thermal diffusion, we describe the formation of H2 on grain surfaces. Finally, we calculate the formation rate on the high temperature dust surfaces for a range of temperature and density in typical conditions of divertor of tokamak.

Dual-frequency modes of the dust acoustic surface waves propagating at the interface between a nonmagnetized multicomponent Lorentzian dusty plasma and a vacuum are investigated, including nonthermal and positron effects. The dispersion relation is kinetically derived by employing the specular refle…

[Phys. Rev. E 92, 013105] Published Fri Jul 24, 2015

This paper shows that several known properties of the Yukawa system can be derived from the isomorph theory, which applies to any system that has strong correlations between its virial and potential-energy equilibrium fluctuations. Such “Roskilde-simple” systems have a simplified thermodynamic
phase diagram deriving from the fact that they have curves (isomorphs) along which structure and dynamics in reduced units are invariant to a good approximation. We show that the Yukawa system has strong virial potential-energy correlations and identify its isomorphs by two different methods. One method, the so-called direct isomorph check, identifies isomorphs numerically from jumps of relatively small density changes (here 10%). The second method identifies isomorphs analytically from the pair potential. The curves obtained by the two methods are close to each other; these curves are confirmed to be isomorphs by demonstrating the invariance of the radial distribution function, the static structure factor, the mean-square displacement as a function of time, and the incoherent intermediate scattering function. Since the melting line is predicted to be an isomorph, the theory provides a derivation of a known approximate analytical expression for this line in the temperature-density phase diagram. The paper's results give the first demonstration that the isomorph theory can be applied to systems like dense colloidal suspensions and strongly coupled dusty plasmas.

In the strongly coupled limit, the generalized hydrodynamic model shows that a dusty plasma, acquiring significant rigidity, is able to support a “shear” like mode. It is being demonstrated here that in presence of velocity shear gradient, this shear like mode gets coupled with the dust acoustic mode which is generated by the compressibility effect of the dust fluid due to the finite temperatures of the dust, electron, and ion fluids. In the local analysis, the dispersion relation shows that velocity shear gradient not only couples the two modes but is also responsible for the instabilities of that coupled mode which is confirmed by nonlocal analysis with numerical techniques.

The effects of linear Landau damping on the nonlinear propagation of
dust-acoustic solitary waves (DASWs) are studied in a collisionless
unmagnetized dusty plasma with two species of positive ions. The extremely
massive, micron-seized, cold and negatively charged dust particles are
described by fluid equations, whereas the two species of positive ions, namely
the cold (heavy) and hot (light) ions are described by the kinetic Vlasov
equations. Following Ott and Sudan [Phys. Fluids {\bf 12}, 2388 (1969)], and by
considering lower and higher-order perturbations, the evolution of DASWs with
Landau damping is shown to be governed by Korteweg-de Vries (KdV), modified KdV
(mKdV) or Gardner (KdV-mKdV)-like equations. The properties of the phase
velocity and the Landau damping rate of DASWs are studied for different values
of the ratios of the temperatures $(\sigma)$ and the number densities $(\mu)$
of hot and cold ions as well the cold to hot ion mass ratio $m$. The
distinctive features of the decay rates of the amplitudes of the KdV, mKdV and
Gardner solitons with a small effect of Landau damping are also studied in
different parameter regimes. It is found that the Gardner soliton points to
lower wave amplitudes than the KdV and mKdV solitons. The results may be useful
for understanding the localization of solitary pulses and associated wave
damping (collisionless) in laboratory and space plasmas (e.g., the F-ring of
Saturn) in which the number density of free electrons is much smaller than that
of ions and the heavy, micron seized dust grains are highly charged.

The collective motion of dust particles during the mode-coupling induced
melting of a two-dimensional plasma crystal is explored in molecular dynamics
simulations. The crystal is compressed horizontally by an anisotropic
confinement. This compression leads to an asymmetric triggering of the
mode-coupling instability which is accompanied by alternating chains of
in-phase and anti-phase oscillating particles. A new order parameter is
proposed to quantify the synchronization with respect to different directions
of the crystal. Depending on the orientation of the confinement anisotropy,
mode-coupling instability and synchronized motion are observed in one or two
directions. Notably, the synchronization is found to be direction-dependent.
The good agreement with experiments suggests that the confinement anisotropy
can be used to explain the observed synchronization process.

Dust structuring is a natural and universal process in complex plasmas. The scattering of electromagnetic waves by dust structures is governed by the factor of coherency, i.e., the total number of coherent electrons in a single structure. In the present paper, we consider how the factor of coherency changes due to additional pulse electron heating and show that it obeys a hysteresis. After the end of the pulse heating, the scattering intensity differs substantially from that before heating. There are three necessary conditions for scattering
hysteresis: first, the radiation wavelength should be larger than the pattern (structure) size; second, the total number of coherent electrons confined by the structure should be large; and third, the heating pulse duration should be shorter than the characteristic time of dust structure formation. We present the results of numerical calculations using existing models of self-consistent dust structures with either positively or negatively charged dust grains. It is shown that, depending on the grain charge and the ionization rate, two types of hysteresis are possible: one with a final increase of the scattering and the other with a final decrease of the scattering. It is suggested that the hysteresis of coherent scattering can be used as a tool in laboratory experiments and that it can be a basic mechanism explaining the observed hysteresis in radar scattering by noctilucent clouds during active experiments on electron heating in mesosphere.